30 research outputs found

    Structure and Dynamics of Poly(methyl-methacrylate)/Graphene systems through Atomistic Molecular Dynamics Simulations

    Get PDF
    The main goal of the present work is to examine the effect of graphene layers on the sructural and dynamical properties of polymer systems. We study hybrid poly(methyl methacrylate) (PMMA)/graphene interfacial systems, through detailed atomistic molecular dynamics (MD) simulations. In order to characterize the interface, various properties related to density, structure and dynamics of polymer chains are calculated, as a function of the distance from the substrate. A series of different hybrid systems, with width ranging between [2.60 – 13.35] nm, are being modeled. In addition, we compare the properties of the macromolecular chains to the properties of the orresponding bulk system at the same temperature. We observe a strong effect of graphene layers on both structure and dynamics of the PMMA chains. Furthermore the PMMA/graphene interface is characterized by different length scales, depending on the actual property we probe: Density of PMMA polymer chains is larger than the bulk value, for polymer chains close to graphene layers up to distances of about [1.0-1.5]nm. Chain conformations are perturbed for distances up to about 2-3 radius of gyration from graphene. Segmental dynamics of PMMA is much slower close to the solid layers up to about [2-3]nm. Finally terminal-chain dynamics is slower, compared to the bulk one, up to distances of about 5-7 radius of gyration

    Molecular Dynamics of Polyisoprene/Polystyrene Oligomer Blends: The role of self-concentration and fluctuations on blend dynamics

    Get PDF
    The effect of self-concentration and intermolecular packing on the dynamics of polyisoprene (PI)/polystyrene (PS) blends is examined by extensive atomistic simulations. Direct information on local structure of the blend system allows a quantitative calculation of self- and effective composition terms at various length scales that are introduced to proposed models of blend dynamics. Through a detailed statistical analysis, the full distribution of relaxation times associated with reorienation of carbon-hydrogen bonds was extracted and compared to literature experimental data. A direct relation between relaxation times and local effective composition is found. Following an implementation of a model involving local composition as well as concentration fluctuations the relevant length scales characterizing the segmental dynamics of both components were critically examined. For PI the distribution of times becomes narrower for the system with the lowest PS content and then broadens as more PS is added. This is in contrast to the slow component (PS), where an extreme breadth is found for relaxation times in the 25/75 system prior to narrowing as we increase PI concentration. The chain dynamics was directly quantified by diffusion coefficients as well as the terminal (maximum) relaxation time of each component in the mixed state. Strong coupling between the friction coefficients of the two components was predicted that leads to very similar chain dynamics for PI and PS, particularly for high concentrations of PI. We anticipate this finding to the rather short oligomers (below the Rouse regime) studied here as well as to the rather similar size of PI and PS chains. The ratio of the terminal to the segmental relaxation time, τterm/τseg,c, presents a clear qualitative difference for the constituents: for PS the above ratio is almost independent of blend composition and very similar to the pure state. In contrast, for PI this ratio depends strongly on the composition of the blend; i.e. the terminal relaxation time of PI increases more than its segmental relaxation time, as the concentration of PS increases, resulting into a larger terminal/segmental ratio. We explain this disparity, based on the different length scales characterizing dynamics. The relevant length for the segmental dynamics of PI is about 0.4-0.6 nm, smaller than chain dimensions which are expected to characterize terminal dynamics, whereas for PS associated length scales are similar (about 0.7-1.0 nm) rendering a uniform change with mixing

    Hierarchical multiscale modeling of polymer-solid interfaces: atomistic to coarse-grained description, and structural and conformational properties of polystyrene-gold systems

    Get PDF
    A hierarchical simulation approach was developed in order to study polystyrene films sandwiched between two parallel Au(111) surfaces. The coarse-grained potentials describing the interaction of polystyrene with the gold surface were developed systematically using constrained all-atom molecular simulations of a styrene trimer on the Au(111) surface. The model was validated by studying a 5 nm film of short (10mer) polystyrene chains using all-atom and coarse-grained molecular dynamics simulations. The density, structure and conformational properties of coarse-grained films were found to be in excellent agreement with all-atom ones. The coarse-grained model was then used to study the structural and conformational properties of roughly 10 nm and 20 nm thick films with 10, 50, 100 and 200mer chains. The width of the interphase region of the polymer films is property specific. The density profiles reached the bulk value around 1.5 nm from the interface, for all chain lengths. An estimate of the width of the interphase region based on the conformation tensor profile indicates that the interphase width is proportional to the square root of the chain length (number of monomers) and for 200mer chains the interphase width is approximately 6-9 nm

    Properties of short polystyrene chains confined between two Gold surfaces through a combined Density Functional Theory and classical Molecular Dynamics approach

    Get PDF
    The properties of atactic short-chain polystyrene films confined between two parallel gold surfaces at a temperature of 503 K are investigated using a combination of density functional theory calculations and classical atomistic simulations. A classical Morse-type potential, used to describe the interaction between the polymer and the gold surface, was parameterized based on the results of density functional calculations. Several polystyrene films were studied, with thicknesses ranging from around 1-10 nm. The structural, conformational and dynamical properties of the films were analysed and compared to the properties of the bulk polystyrene systems. The dynamics of the polystyrene close to the surface was found to be significantly slower than in the bulk

    Dynamic Heterogeneity in Fully Miscible Blends of Polystyrene with Oligostyrene

    Get PDF
    Binary blends of polystyrene with oligostyrene are perfectly miscible (χ=0) yet dynamically heterogeneous. This is evidenced by independent probing of the dipole relaxation perpendicular to the backbone by dielectric spectroscopy and molecular dynamics. The self-concentration model with a single intra-molecular length scale qualitatively describes the slower segmental dynamics. A quantitative comparison based on MD however, requires a composition-dependent length scale. The pertinent dynamic length scale that best describes the slow segmental dynamics in miscible blends relates to both intra- and inter-molecular contributions

    Effect of Solvent on the Self-Assembly of Dialanine and Diphenylalanine Peptides

    Get PDF
    Diphenylalanine (FF) is a very common peptide with many potential applications, both biological and technological, due to a large number of different nanostructures which it attains. The current work concerns a detailed study of the self assembled structures of FF in two different solvents, an aqueous (H2O) and an organic (CH3OH) through simulations and experiments. Detailed atomistic Molecular Dynamics (MD) simulations of FF in both solvents have been performed, using an explicit solvent model. The self assembling propensity of FF in water is obvious while in methanol a very weak self assembling propensity is observed. We studied and compared structural properties of FF in the two different solvents and a comparison with a system of dialanine (AA) in the corresponding solvents was also performed. In addition, temperature dependence studies were carried out. Finally, the simulation predictions were compared to new experimental data, which were produced in the framework of the present work. A very good qualitative agreement between simulation and experimental observations was found

    A novel method for measuring the bending rigidity of model lipid membranes by simulating tethers

    Full text link
    The tensile force along a cylindrical lipid bilayer tube is proportional to the membrane's bending modulus and inversely proportional to the tube radius. We show that this relation, which is experimentally exploited to measure bending rigidities, can be applied with even greater ease in computer simulations. Using a coarse-grained bilayer model we efficiently obtain bending rigidities that compare very well with complementary measurements based on an analysis of thermal undulation modes. We furthermore illustrate that no deviations from simple quadratic continuum theory occur up to a radius of curvature comparable to the bilayer thickness.Comment: 7 pages, 5 figures, 1 tabl
    corecore